A software bug is the common term used to describe an error, flaw, mistake, failure, or fault in a computer program or system that produces an incorrect or unexpected result, or causes it to behave in unintended ways. Most bugs arise from mistakes and errors made by people in either a program's source code or its design, and a few are caused by compilers producing incorrect code. A program that contains a large number of bugs, and/or bugs that seriously interfere with its functionality, is said to be buggy. Reports detailing bugs in a program are commonly known as bug reports, fault reports, problem reports, trouble reports, change requests, and so forth.
Prevention
Bugs are a consequence of the nature of human factors in the programming task. They arise from oversights or mutual misunderstandings made by a software team during specification, design, coding, data entry and documentation. For example: In creating a relatively simple program to sort a list of words into alphabetical order, one's design might fail to consider what should happen when a word contains a hyphen. Perhaps, when converting the abstract design into the chosen programming language, one might inadvertently create an off-by-one error and fail to sort the last word in the list. Finally, when typing the resulting program into the computer, one might accidentally type a '<' where a '>' was intended, perhaps resulting in the words being sorted into reverse alphabetical order. More complex bugs can arise from unintended interactions between different parts of a computer program. This frequently occurs because computer programs can be complex — millions of lines long in some cases — often having been programmed by many people over a great length of time, so that programmers are unable to mentally track every possible way in which parts can interact. Another category of bug called a race condition comes about either when a process is running in more than one thread or two or more processes run simultaneously, and the exact order of execution of the critical sequences of code have not been properly synchronized.
The software industry has put much effort into finding methods for preventing programmers from inadvertently introducing bugs while writing software.[11][12] These include:
Programming style
While typos in the program code most likely are caught by the compiler, a bug usually appears when the programmer makes a logic error. Various innovations in programming style and defensive programming are designed to make these bugs less likely, or easier to spot.
Programming techniques
Bugs often create inconsistencies in the internal data of a running program. Programs can be written to check the consistency of their own internal data while running. If an inconsistency is encountered, the program can immediately halt, so that the bug can be located and fixed. Alternatively, the program can simply inform the user, attempt to correct the inconsistency, and continue running.
Development methodologies
There are several schemes for managing programmer activity, so that fewer bugs are produced. Many of these fall under the discipline of software engineering (which addresses software design issues as well). For example, formal program specifications are used to state the exact behavior of programs, so that design bugs can be eliminated. Unfortunately, formal specifications are impractical or impossible for anything but the shortest programs, because of problems of combinatorial explosion and indeterminacy.
Programming language support
Programming languages often include features which help programmers prevent bugs, such as static type systems, restricted name spaces and modular programming, among others. For example, when a programmer writes (pseudocode) LET REAL_VALUE PI = "THREE AND A BIT", although this may be syntactically correct, the code fails a type check. Depending on the language and implementation, this may be caught by the compiler or at runtime. In addition, many recently-invented languages have deliberately excluded features which can easily lead to bugs, at the expense of making code slower than it need be: the general principle being that, because of Moore's law, computers get faster and software engineers get slower; it is almost always better to write simpler, slower code than "clever", inscrutable code, especially considering that maintenance cost is considerable. For example, the Java programming language does not support pointer arithmetic; implementations of some languages such as Pascal and scripting languages often have runtime bounds checking of arrays, at least in a debugging build.
Code analysis
Tools for code analysis help developers by inspecting the program text beyond the compiler's capabilities to spot potential problems. Although in general the problem of finding all programming errors given a specification is not solvable (see halting problem), these tools exploit the fact that human programmers tend to make the same kinds of mistakes when writing software.
Instrumentation
Tools to monitor the performance of the software as it is running, either specifically to find problems such as bottlenecks or to give assurance as to correct working, may be embedded in the code explicitly (perhaps as simple as a statement saying PRINT "I AM HERE"), or provided as tools. It is often a surprise to find where most of the time is taken by a piece of code, and this removal of assumptions might cause the code to be rewritten.
Sunday, February 21, 2010
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment